
© 2014 IBM Corporation

Increasing productivity
with requirements reuse and
variant management with
DOORS Next Generation

DRM 1946

Eran Gery – DE, Rational Systems Solutions

Daniel Moul – Sr. Product Manager

Brian Steele – RM Architect

Please note
IBM’s statements regarding its plans, directions, and intent are subject to change

or withdrawal without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general

product direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment,

promise, or legal obligation to deliver any material, code or functionality.

Information about potential future products may not be incorporated into any

contract. The development, release, and timing of any future features or

functionality described for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM

benchmarks in a controlled environment. The actual throughput or performance

that any user will experience will vary depending upon many factors, including

considerations such as the amount of multiprogramming in the user’s job stream,

the I/O configuration, the storage configuration, and the workload processed.

Therefore, no assurance can be given that an individual user will achieve results

similar to those stated here.

Plans are based on best information available and may change in future.

• Motivations & Definitions

• Patterns

– Branch from closest product/component

– Use common reference assets

– Negative & positive variability

– Functional and Temporal Variation

• Enabling capabilities

– 1. Configuration management

– Demo

– 2. Global configurations and product definition

– 3. Parameterized

– 4. Integrating feature modeling

Outline

3

• Trend toward mass customization and

shorter product lifecycles

• More embedded software; more

complex connected products

• Need to adhere to safety standards,

compliance and regulations

Doing more with less in a customizing world

4

Source: http://commons.wikimedia.org/wiki/File:ITPB_health_Club.jpg

• Managing requirements for a product family e.g.,

– A vehicle platform

– A set of insurance claim systems

• Handling supply chain

– Multiple suppliers with varying components

• Shared requirements across different programs for different

customers

• Parallel development of multi-year programs

• Handling requirements for a trade-study prototypes

Some reuse scenarios…

5

• Business & technical strategy

• Some automotive examples

– Addressing different geographical markets (OEMs)

• Safety regulations, Language, Driving side

– Delivering parts to multiple OEMs (Suppliers)

– 100s or 1000s of variants … 1,000,000s of combinations

Product Line Engineering

6

GM started a reuse approach (PLE) in software

engineering with impressive results:

1st Application of Complex
Non-PLE ECU

1st Application of Complex
PLE ECU

2nd Application of Complex
Non-PLE ECU

2nd Application of Complex
PLE ECU

-38%

-87%

Strategic reuse: the conceptual scenario…

A problem is

found and

change applied

Fix delivered from Program

B Base variant, then to

other family variants

Program B identifies

and issue and fixes it

A

B

C

• Management of core platform engineering (“base”)

• Enable parallel engineering of platform variants

• Enable controlled reuse and change propagation downstream and upstream

Base

• “Branching” from closest product / component

• A more tactical reuse approach…

Patterns of reuse

9

A

C

B

• Core assets pattern

Patterns of reuse

10

Program B identifies

and issue and fixes it

A

B

C

Core

Supplier ‘b’ DB

Central DOORS NG Database

Main Development Stream

Specifications
V1

Specifications
V2

Specifications
V2 + a2

Specifications
V2 + a2 + b2

Supplier ‘a’ Stream

Specifications
V1 + a1

Specifications
V1 + a2

Supplier ‘b’ Stream

Specifications
V1 + b1

Specifications
V1 + b2

Round trip
ReqIF to get
supplier
feedback

Supplier ‘a’ DB
All updates
reflected back in
central database
but in private
‘streams’

Supplier updates
protected until
they are
approved

IBM confidential – shared under NDA

Example scenario: supplier communications
ReqIF with requirements configuration management

• How are core assets reused: negative vs. positive variability

Patterns of reuse (3)

12

General requirements
Capability A

Project F104; Configuration Base

Market: [p_market]

Controls: [p_controls]

NoPrograms:[p_NoPrograms]

TypeSignal:[p_Signal]

Environmental reqs

(Generic)

Capability B

Project F104; Configuration US

General requirements

Market: US

Engine: J79

NoPrograms: 3

Pods: yes Environmental reqs US

Capability A

Capability B

Capability C

General requirements
Capability A

Project F104; Configuration Base

Market: [p_market]

Controls: [p_controls]

NoPrograms:[p_NoPrograms]

TypeSignal:[p_Signal]

Environmental reqs US

[geo =US]

Capability B

Capability C

Environmental reqs UK

[geo – UK]

Environmental reqs

[geo = Kor]

Capability A

Project F104; Configuration Base

Environmental reqs US

[geo =US]

Capability B

Capability C

General requirements

Market: US

Engine: J79

NoPrograms: 3

Pods: yes

Positive: Branch, Add, Modify Negative: Filter, Branch + Derive

Variability dimensions: functional variability

Release

Baselines

(time)

2013

Baseline 3

E Model

GT Model

S Model

 C Model

F
un

ct
io

na
l
M

an
ag

e
m

e
nt

Baseline 1 Baseline 2

Variant Artifacts

Derivation

Note: Feature models & profiles evolve over time and are also temporally managed

Functional

Variants

Product

Development

(AKA product

engineering)

• Parallel configurations representing different temporal plans

• E.g – different annual plans, different iterations

Variability dimensions: temporal variability

Baseline 1

2014

2015

Releases

2013

Baseline 2

Baseline 3 Baseline 1 Baseline 2

Baseline 1

Platform Artifacts

Note: Feature models & profiles evolve over time and are also temporally managed

Platform

Development

(AKA Domain

Engineering)

The temporal dimension is needed if there is parallel engineering overlap

between temporal targets. This is not always the case for requirements

engineering. Sometimes it is needed for the V&V info.

Combining variants with parallel development…
Baseline 1

2014

2015

Releases

Release

Baselines

(time)

2013

Baseline 2

Baseline 3

E Model

GT Model

S Model

 CLX Model

F
un

ct
io

na
l
M

an
ag

e
m

e
nt

Baseline 1 Baseline 2

Baseline 1

Platform Artifacts

Variant Artifacts

Derivation

Note: Feature models & profiles evolve over time and are also temporally managed

Functional

Variants

Platform

Development

(AKA Domain

Engineering)

Product

Development

(AKA product

engineering)

16

Components and configurations
• Components are collection of logically related artifacts from a particular domain

• Artifacts have versions

• A (component) configuration specifies the included artifacts and their versions

• Configurations can share common artifacts and manage variability of other artifacts

• Configurations can be mutable (stream) or immutable (baseline)

16

R1 - V1 R1 - V2

R1

R2 - V1 R2 - V2

R2

R3

R3 - V1 R3 - V2

China

US

Europe

= Concept artifact

= Version artifact

Component DNG project)

shared artifact

= configuration

17

Example: Components and configurations

17

A5.1

A2.1

A4.1

Power Train [Base]

A3.1
A1.1

A5.2

A2.1

A4.2

Power Train [Model A]

A3.1
A1.1

A5.3

A2.1

A4.2

Power Train [Model B]

A3.1
A1.1

A5.3

A2.1

A4.2

Power Train [Model C]

A3.1
A1.1

A6.1 A7.1

Common Requirement

Variant requirement

Added requirement

18

• What happens to links when we create new versions of requirements?

– Conceptual links are defined relatively to conceptual requirements e.g. A1, A2, A3,

A4, A5

Conceptual Links

18

A5.1

A2.1

A4.1

Power Train [Base]

A3.1
A1.1

A5.2

A2.1

A4.2

Power Train [Model A]

A3.1
A1.1

Common Requirement

Variant requirement

Added requirement

Conceptual Links persist when versions of objects are

replaced in a configuration

L1

L1 L2

L2 L1

Example: Requirement configurations DOORS NG

• Diff contents of two

configurations

• Diff contents of module

in two configurations

IBM confidential – shared under NDA

• Each product variant is a branch of evolving artifacts

– A stream or “workspace” – A mutable configuration

– Streams are associated with baselines – Immutable configurations

• Common artifacts are shared across branches

• On one branch, evolution is a sequence of baselines

• New variants can be branched from existing variants

– Can evolve in parallel

• Branches can update other branches using workspace delivery

Realizing variant management with streams

20

China Variant

Base

(common) product

Europe Variant

h

Time

Stream

Baseline

• Changsets – a logical grouping of requirement changes that can

be assocated – e.g. with a change request

• Changeset Delivery, Delivery Targets

• Rebasing

• Key reuse patterns

– Creating a new variant – create a child stream

– Updating common requirements from the base stream to a variant

– Rebasing

– Updating the base with changes already in the variant – deliver

changes

– Looking at a difference between two variants – compare streams

– Handling “conflicting” changes - merge

Some essentials for reuse scenarios

21

22

Parallel development of components with streams

Workspace

V 2012

Workspace

V 2013
Engineer A

Engineer B

Module3

V1

Accept changes

Module3

V3

Module3
V4

• Streams are mapped to workspaces in the various domain tools

• Changes to artifacts are shared into streams as change-sets

• Changes can be delivered across streams

• Deliveries may result in conflict detection that leads to a merge

modul3

V2 V4 = merge (v2,v3)

Deliver changes

engineers deliver

Change sets to streams

DEMO

23

Example: Automated Meter Reader Scenario

24

Demonstration scenario - 1

1. Initial setup: AMR Base, AMR
Europe, AMR Asia

2. Add new Requirements in the AMR Base
Configuration. Create an explicit baseline.

 Compare the new baseline with the old
one

3. In AMR Europe, rebase configuration on the
new baseline from step 2

– Show that changes are present in AMR
Europe, not present in AMR Asia.

4. Derive a new configuration - AMR South
America using the baseline from step 2
– Show that AMR Europe and AMR South

America are identical

5. In AMR Europe, make changes to a common
requirement using a change set linked to a work
item and deliver change to AMR Base.

6. Baseline AMR Europe.

7. Baseline AMR Base.

8. Rebase AMR South America to new Global
Baseline.

AMR Asia

AMR Base (common)

product

AMR Europe

Demonstration scenario - 2

AMR Asia

AMR Base (common)

product

AMR Europe

Baseline 2

1. Initial setup: AMR Base, AMR Europe, AMR
Asia

2. Add new Requirements in the
AMR Base Configuration.
Create an explicit baseline.

 Compare the new baseline
with the old one

3. In AMR Europe, rebase configuration on the
new baseline from step 2

– Show that changes are present in AMR
Europe, not present in AMR Asia.

4. Derive a new configuration - AMR South
America using the baseline from step 2
– Show that AMR Europe and AMR South

America are identical

5. In AMR Europe, make changes to a common
requirement using a change set linked to a work
item and deliver change to AMR Base.

6. Baseline AMR Europe.

7. Baseline AMR Base.

8. Rebase AMR South America to new Global
Baseline.

Demonstration scenario - 3

AMR Asia

AMR Base (common)

product

AMR Europe

Baseline 2

Update Common

1. Initial setup: AMR Base, AMR Europe, AMR
Asia

2. Add new Requirements in the AMR Base
Configuration. Create an explicit baseline.

 Compare the new baseline with the old
one

3. In AMR Europe, rebase
configuration on the new
baseline from step 2
– Show that changes are present in AMR

Europe, not present in AMR Asia.

4. Derive a new configuration - AMR South
America using the baseline from step 2
– Show that AMR Europe and AMR South

America are identical

5. In AMR Europe, make changes to a common
requirement using a change set linked to a work
item and deliver change to AMR Base.

6. Baseline AMR Europe.

7. Baseline AMR Base.

8. Rebase AMR South America to new Global
Baseline.

Demonstration scenario - 4

AMR Asia

AMR Base (common)

product

AMR Europe

Baseline 2

Update Common

AMR South America

1. Initial setup: AMR Base, AMR Europe, AMR
Asia

2. Add new Requirements in the AMR Base
Configuration. Create an explicit baseline.

 Compare the new baseline with the old
one

3. In AMR Europe, rebase configuration on the
new baseline from step 2

– Show that changes are present in AMR
Europe, not present in AMR Asia.

4. Derive a new configuration -
AMR South America using the
baseline from step 2
– Show that AMR Europe and AMR South

America are identical

5. In AMR Europe, make changes to a common
requirement using a change set linked to a work
item and deliver change to AMR Base.

6. Baseline AMR Europe.

7. Baseline AMR Base.

8. Rebase AMR South America to new Global
Baseline.

Demonstration scenario - 5

AMR Asia

AMR Base (common)

product

AMR Europe

Baseline 2

Update Common

AMR South America

1. Initial setup: AMR Base, AMR Europe, AMR
Asia

2. Add new Requirements in the AMR Base
Configuration. Create an explicit baseline.

 Compare the new baseline with the old
one

3. In AMR Europe, rebase configuration on the
new baseline from step 2

– Show that changes are present in AMR
Europe, not present in AMR Asia.

4. Derive a new configuration - AMR South
America using the baseline from step 2
– Show that AMR Europe and AMR South

America are identical

5. In AMR Europe, make changes
to a common requirement
using a change set linked to a
work item and deliver change
to AMR Base.

6. Baseline AMR Europe.

7. Baseline AMR Base.

8. Rebase AMR South America to new Global
Baseline.

Demonstration scenario - 6

AMR Asia

AMR Base (common)

product

AMR Europe

Baseline 2

Update Common

AMR South America

1. Initial setup: AMR Base, AMR Europe, AMR
Asia

2. Add new Requirements in the AMR Base
Configuration. Create an explicit baseline.

 Compare the new baseline with the old
one

3. In AMR Europe, rebase configuration on the
new baseline from step 2

– Show that changes are present in AMR
Europe, not present in AMR Asia.

4. Derive a new configuration - AMR South
America using the baseline from step 2
– Show that AMR Europe and AMR South

America are identical

5. In AMR Europe, make changes to a common
requirement using a change set linked to a work
item and deliver change to AMR Base.

6. Baseline AMR Europe.
7. Baseline AMR Base.

8. Rebase AMR South America to new Global
Baseline.

Demonstration scenario - 7

AMR Asia

AMR Base (common)

product

AMR Europe

Baseline 1

Update Common

AMR South America

1. Initial setup: AMR Base, AMR Europe, AMR
Asia

2. Add new Requirements in the AMR Base
Configuration. Create an explicit baseline.

 Compare the new baseline with the
old one

3. In AMR Europe, rebase configuration on the
new baseline from step 2

– Show that changes are present in AMR
Europe, not present in AMR Asia.

4. Derive a new configuration - AMR South
America using the baseline from step 2
– Show that AMR Europe and AMR South

America are identical

5. In AMR Europe, make changes to a common
requirement using a change set linked to a
work item and deliver change to AMR Base.

6. Baseline AMR Europe.

7. Baseline AMR Base.
8. Rebase AMR South America

to new Global Baseline.

Handling multiple components - component
dependencies

• To enable higher reuse, it is useful to

organize requirements in multiple

components

• Initially, DNG uses projects as

component boundaries

– To be refined in 2015

• Component configurations are linked

using dependencies

– Essentially imply a hierarchical

structure

• A “component” can be part of multiple

products

– At same or different baseline

32

PowerTrain v1.1

Gas Engine v1.1

Pump 2.1 Spark v3.1

Gear v2.1

Sedan 2015

Body v2.0

PowerTrain v2.1

Diesel Engine v1.1

Pump 2.1

Gear v2.1

SUV 2015

Body v2.0

Same

Component

baseline

Same

Component

The bigger picture – global configurations

• How do we configure requirements along with the respective tests, architecture,

and code?

• Global configurations (GCs) create compositions of configurations into multi-

domain composite configurations

• GCs are part of OSLC configuration management

• GCs can be hierarchical

• GCs can also be mutable (global streams) or immutable (global baselines)

33

Cfgm

Model v1.1

Engine v1.1

Pump 2.1 Spark v3.1

Gear v2.1

Requirements

Architecture

Test

Requirements

Architecture

Test

Requirements

Architecture

Test

A hierarchical GC Domain (tool) configurations

System

Subsystems L1

Subsystems L2

Using the product definition tool to manage global configs

Engine 2.0

Engine
Requirements

Engine
Test

Power
Train 1.0

Engine
Code

Car <US>

A1

A2

A3

Requirements 1.2

A1

A2

A3

Test Cases 1.1

A1

A2

A3

Source code 1.2

Engine 3.0

Engine
Requirements

Engine
Test

Power
Train 2.0

Engine
Code

Car <EU>

Test Cases 1.0

Source code 1.1

Requirements 1.0

The PD tool structure also specifies
global configurations

Future outlook: more on reuse patterns

35

#ifdef

Multi-stream
• Using requirements versions and component streams to realize variants

• What we’ve discussed so far…

Parameterized
• Parameterizing components and artifacts for reuse

Feature-driven
• Deriving requirements configurations by feature selection

• Integrate with feature modeling tools

• Parametric components enable artifact reuse by parameterization

• Actual parameter settings derive concrete configurations of the parameterized artifacts

– Conditional inclusion

– Value substitution

Example: a parameterized component

Parametric Variant Management

General requirements

Program „long“

[condition: #programs =3]

Program „medium“

Program „short“

Project washing machine; Configuration Base

Market: [p_market]

Controls: [p_controls]

NoPrograms:[p_NoPrograms]

TypeSignal:[p_Signal]

Environmental reqs EU

[Condition: “market == EU”]

Environmental reqs US

[Condition: “market == US”]

Environmental reqs China

[Condition: “market == China”]

Variability Parameters:
p_Market: Null

p_Controls: Null

p_NoPrograms: Null

Example: Washing machine – derivation using parameters

General requirements

Program „Medium“

Program „ Short“

Project WashingMachine; Configuration Europe

Market: Europe

Controls: Both

NoPrograms: 3

Environmental reqs EU
Variability Parameters:
p_Market: Europe

p_Controls: Both

p_NoPrograms: 2

General requirements

Program „Long“

Program „Medium“

Program „ short“

Project WashingMachine; Configuration US

Market: US

Controls: Sensor

NoPrograms: 3

Environmental reqs US
Variability Parameters:
p_Market: US

p_Controls: Sensor

p_NoPrograms: 3

p_Signal: Both

p_Color: Black

China Variant

Us variant

Base (common) product

Time

Europe Variant

h

Parametric variant management and product streams

• The base configuration introduce a document with a set of properties serve as
the variability parameters (variability model)

• variant configuration assign different parameter values to those defined in the
base

• Automation scripts modify the content of artifacts in variant configurations
according to the assigned values (*)

• In new platform baselines artifacts are pushed to variant configurations and
variability update is calculated again

• Constraints can be checked using filters (query based) or scripts that check
the constraints (*)

Variability

parameters

Europe

Parameters

US

Parameters

China

Parameters

Variability

parameters

Europe

Parameters

US

Parameters

China

Parameters

Variability model can change over time along baselines

(*) These steps are still subject to salability of the scripting engine

39

Feature Models

• Feature models represent the “problem

domain” abstraction of the product line

• Capture a functional view of the system

components and their variabilities from

a product line management standpoint

• Feature models have configurations

called feature profiles, which drive the

variability parameters of the solution

– In our case they can be mapped to

dimension and dimension values

• We plan to enable 3rd party feature

modeling tools to integrate with the

platform PLE services

– E.g. BigLever or PureVariants

Europe

Car

Trim Level

Market

US

L XL XLT

Engine

Diesel Gas Hybrid

Constraint:

Hybrid only

Possible if

XLT
Car

Trim Level

Market

US

XL

Engine

Gas

Feature Configuration

Feature Model

Variant/

Feature

Market Trim Engine … …

Variant 1 EU L Diesel

Variant 2 US XL GAS

Variant 3 US XLT GAS

40

Adding feature management to drive product configurations

Gas

Trim =

Geo = US

Engine =

XL

Parameters configuration

Feature selection

Car

Trim Level

Market

US

XL

Engine

Gas

Parameterized Artifacts

Product Artifacts

OR

Summary

• Configuration Management benefits

– Isolated changes with controlled propagation

– Reuse without copying

• Streams (workspaces) can express product versions and variants

• Propagate changes

– In the common requirements by delivering them to the variant

configurations

– In a variant and deliver to the common stream

• Consider parametric and feature-driven approaches where you

have a large variability space

• Start exploring now

– Download the DOORS NG with CM open beta from jazz.net

Thank You

Acknowledgements and Disclaimers

 © Copyright IBM Corporation 2014. All rights reserved.

– U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

 IBM, the IBM logo, ibm.com, are trademarks or registered trademarks of International Business Machines Corporation in the United

States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a

trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is

available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml

 Other company, product, or service names may be trademarks or service marks of others.

 Availability. References in this presentation to IBM products, programs, or services do not imply that they will be available in all

countries in which IBM operates.

 The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are

provided for informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice

to any participant. While efforts were made to verify the completeness and accuracy of the information contained in this presentation, it is

provided AS-IS without warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of,

or otherwise related to, this presentation or any other materials. Nothing contained in this presentation is intended to, nor shall have the

effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the

applicable license agreement governing the use of IBM software.

 All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may

have achieved. Actual environmental costs and performance characteristics may vary by customer. Nothing contained in these

materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific

sales, revenue growth or other results.

http://www.ibm.com/legal/copytrade.shtml

