
Beyond RE: Solving the really hard problems
in engineering and development

Daniel Moul
Senior Offering Manager
IBM Watson IoT Engineering

REConf 2019

© 2019 IBM Corporation

2

Requirements are only meaningful if they are defined and used within a development
process – ideally one that guides teams to maximum impact and maximum efficiency.
This statement has many implications for your development process and the many
tools your developers and engineers use as they bring your development process to
life. A foundational enabler is the ability to create a shared development context for
your teams and evolving it in a controlled way: across multiple tools from multiple
vendors, maintaining dependencies among the data in these tools, and with effective
change management. This session will briefly survey ways this is typically addressed
today with the various compromises that are inherent in these approaches, then
explain the concepts and promise of “global configurations” in your engineering tool
chain as enabled by OASIS OSLC Configuration Management and implemented by the
IBM Continuous Engineering solution for software and systems engineering.

Session description

• More features, mostly in software
• Higher quality / recall avoidance
• Multi-tier value chains
• Growing regulatory demands
• Time-to-market pressure

Watson / Presentation Title / Date

Smart and connected products challenge
existing engineering processes

Lines of
code

Mars Curiosity rover: 0.5m

F-35 fighter jet: 25m

Premium car: 100m

Fully autonomous car: 800m

Complexity is rising!

The challenge

Design and develop a complex product
from very many …

• Software and hardware components
• Engineering specialties, teams, suppliers and

subcontractors spread around the planet
• Engineering tools & their data

4

Version 10 Version 3 Version 9 Version 8 Version 6

+ + + + 30,000 other things
1 engineering
environment
configuration

Traceable engineering tools Open and effective integrations

+ +
+ =

Then create many product variants

Then evolve them in way that is
• Controlled
• Cost effective
• Time effective
• High quality

6

?
•Systems engineering
•Requirements management
•Change management
•V&V
•Version management /

configuration management
•Reuse / product variants
•Traceability
•Auditability
•Reporting
•Good process
•Good people

Efficiency

Correctness

7

IBM Engineering Lifecycle Management: transforming smart products engineering

8

Digital continuity
Enable cross discipline digital threads
to streamline impact of change
analysis and standards compliance

Early design verification
Verify at all stages of the product
lifecycle with model based engineering
and digital twins

Scaled agility
Effective agile engineering with digital
governance, real-time feedback, team
collaboration, and continuous delivery

Strategic reuse and
product line engineering
Reuse engineering data in parallel
development and product variants

Engineering insights with AI
Use AI and advanced analytics to
improve quality and support
engineering decision making

Efficiency

Correctness

IBM Requirements Quality Assistant

IBM Watson IoT / © 2018 IBM Corporation

Reduce risk and ambiguity using Watson AI
• Scores requirements against criteria

consistent with the INCOSE Guidelines for
Writing Good Requirements

• Authors receive coaching from Watson to
improve the quality of their requirements

• Pre-trained to detect 10 quality issues
• Add additional dimensions of quality, or

customize to your industry or company

Embedded in DOORS Next Generation (DNG)
Uses Watson Natural Language Understanding

Requirements Quality Assistant - Intelligentes Anforderungsmanagement
mit IBM Watson (Dominik Jergus, IBM Watson IoT)

Wednesday, 13th of März 2019, 10:50am

IBM Engineering Lifecycle Management: transforming smart products engineering

10

Digital continuity
Enable cross discipline digital threads
to streamline impact of change
analysis and standards compliance

Early design verification
Verify at all stages of the product
lifecycle with model based engineering
and digital twins

Scaled agility
Effective agile engineering with digital
governance, real-time feedback, team
collaboration, and continuous delivery

Strategic reuse and
product line engineering
Reuse engineering data in parallel
development and product variants

Engineering insights with AI
Use AI and advanced analytics to
improve quality and support
engineering decision making

Efficiency

Correctness

11

Half-way solution (1) single-repository version/configuration mgmt

•Not practical: tools come
from many vendors

•Can’t use best-of-breed
tools across HW & SW
configuration management

•Life happens:
mergers, acquisitions,
re-organizations

Vendor lifecycle tools

Additional
tool needed

12

Half-way solution (2) file-based version/configuration mgmt

•Your files in SCM are not in sync with
the artifacts in the tools

•Loss of artifact versioning, history,
and audit trail

•Hard to create and maintain
dependencies between resources

•Queries and reports on past
baselines require reconstructing tool
data

•Difficult to monitor or enforce
adherence to policies

User-managed and file-based
Software Configuration Mgmt

Files are lowest
common denominator

13

Creating shared development context: assumptions and conclusions

Open world assumptions OASIS OSLC

Non-homogenous tools, data,
teams, processes

W3C linked data,
federated data stores

Shared configuration context Configuration Mgmt specification
defines “global configuration”
dev streams and baselines

Products are systems of systems Global config hierarchies

Automation improves
correctness and efficiency

Resolve link and resource
versions based on GC

14

A configuration includes…

Versions of the artifacts Requirements, designs, documents, test plans,
test cases, calibrations, source files

Build environment Type systems, database schemas
Tools, scripts, compilers, library and operating
system version and patch information
User environment (options, settings, ini files,
config files, etc.)

Revision history, including
change comments

Who changed what, when, and why

Links between artifacts Links need to be versioned just as other
properties of artifacts
And then navigated in the context of the
relevant configurations (including baselines)

15

Complex products are a hierarchy of streams and baselines

AMR
Handheld

System

Logic
package

Firm
ware

Subsystems L1

Subsystems L2

Requirements

Architecture
Test

Implementation

Requirements
Architecture

Test
Implementation

Validates

Satisfies
Requirements

Requirements

Architecture

Test

SoC
package

Sensor
package…

…

16

Complex products in a product line
Evolves over time …
with variants to meet different needs

AMR Handheld

EU Handheld

US Mobile

StreamBaseline

Function

Time

AMR
Handheld

System

Logic
package

Firm
ware

Subsystems L1

Subsystems L2

Requirements
Architecture

Test
Implementation

Requirements
Architecture

Test
Implementation

Requirements

Requirements
Architecture

Test

SoC
package

Sensor
package

…

…

17

Generating product variants
Where our feature-modeling partners fit
pure-systems and BigLever

Changes
over time

Engineering
disciplines

Requirements

Designs

Tests

Implementation

Product variants
generated from
superset baselines

P1
P2

P3

Superset streams
with baselines

B1 B3

B3

B1 B2

Platform
Development

Trunk

P1 P2 P3 P4 P5

Global baselines

B2

B1 B2

1
8

Which is your target?

Discipline, Maturity, Business Value

Establish enduring
reference points in
one domain and
across domains

Controlled
development
process with full
audit trail

Work on multiple
development
streams at the
same time

Engineer products
variants that have
small differences
among them

Engineer as
product line for
high level of reuse
in variants

Change
Management

Parallel
Development

Product
Variants

Product Line
Engineering

Baselines

We need systems thinking to design complex products …
and to design modern engineering processes and tools

1. A system is not the sum of its parts, it is the
product of the interactions of its parts

2. Performance of a system is dependent on
how the parts fit and work together

3. Performance improvement programs can
fail because they optimize individual parts
at the expense of the whole

4. Finding and removing deficiencies is not
the best way to improve the system

5. Discontinuous improvement (creativity,
breaking away from the past) can be more
impactful than incremental improvements

Market
Analysis

System
V & V

System
Test

System
Requirements

System
Design

Deploy or
Release to Mfg

Customer
Requirements

Operations and
Maintenance

Implementation

Decomposition

and Definition In
teg

rat
ion

an
d V

ali
da

tio
n

Electrical /
Electronics

Design

Mechanical
Design

Lean Software
Engineering

Continuous
Engineering

Component
test

Component
Design

Global configurations are a way of realizing
systems thinking

20

üAutomated testing
üAutomated build

and deployment
pipeline (DevOps)

üRequirements practices
üSystems engineering

üModel-based engineering

üSimulation

Engineering Lifecycle Management with IBM

üChange management
üVersion and configuration

management

üIterative / agile / lean practices
üAutomated reporting and doc generation
üRegulatory compliance

Market
Analysis

System
V & V

System
Test

System
Requirements

System
Design

Deploy or
Release to Mfg

Customer
Requirements

Operations and
Maintenance

Implementation

Decomposition

and Definition In
teg

rat
ion

an
d V

ali
da

tio
n

Electrical /
Electronics

Design

Mechanical
Design

Lean Software
Engineering

Continuous
Engineering

Component
test

Component
Design

We help teams to design and develop complex
software-intensive products and systems

1. With change management and
configuration management

2. With traceability
3. At scale
4. With high levels of reuse
5. Addressing standards and compliance
6. Using open standards and integrations

to bring together multiple teams
using tools from multiple vendors

7. Across the whole Systems V

Market
Analysis

System
V & V

System
Test

System
Requirements

System
Design

Deploy or
Release to Mfg

Customer
Requirements

Operations and
Maintenance

Implementation

Decomposition

and Definition In
teg

rat
ion

an
d V

ali
da

tio
n

Electrical /
Electronics

Design

Mechanical
Design

Lean Software
Engineering

Continuous
Engineering

Component
test

Component
Design

We help teams to design and develop complex
software-intensive products and systems

24

1. Russell Akoff on Systems Thinking
2. Systems and software engineering:

https://www.ibm.com/internet-of-things/solutions
3. Interactive whitepaper:

https://www.ibm.com/internet-of-
things/learn/continuous-engineering-IoT/

4. Strategic reuse and product line engineering
5. Engage with us at https://jazz.net where

we use our tools to develop our tools

Learn more

https://www.google.com/search?q=Russel+Ackoff+systems+thinking
https://www.ibm.com/internet-of-things/solutions
https://www.ibm.com/internet-of-things/learn/continuous-engineering-IoT/
https://www.ibm.com/developerworks/rational/library/14/strategic-reuse/index.html
https://jazz.net/

Summary

• Configuration management across the engineering lifecycle is
an essential need in today’s complex product engineering to
deal with the growing complexity

• Global configuration management enables agile engineering,
industry compliance, cross program reuse, and product line
engineering

• IBM offers unique engineering lifecycle management
capabilities with open, federated configuration management

• Advanced PLE use cases with partner feature modeling tools
make use global configurations to automate the creation of
product variants

AMR
Handheld

System

Logic
package

Firm
ware

Subsystems L1

Subsystems L2

Requirements

Architecture

Test

Implementation

Requirements

Architecture

Test

Implementation

Validates

Satisfies
Requirements

Requirements

Architecture

Test

SoC
package

Sensor
package

…

…

