Show the code
data_for_table <- dta_by_brand_power_train |>
select (brand, power_train, count) |>
summarize (n = sum (count),
.by = c (brand, power_train)
) |>
complete (brand, power_train, fill = list (n = 0 )) |>
mutate (brand = fct_reorder (brand, - n, sum)) |>
arrange (brand, desc (power_train)) |>
pivot_wider (names_from = "power_train" ,
values_from = "n" ) |>
clean_names () |>
rename (petrol_electric = petrol_electric_plug_in_hybrid,
diesel_electric = diesel_electric_plug_in_hybrid) |>
mutate (subtotal = petrol_electric + diesel_electric + battery_electric) |>
mutate (total = petrol + diesel + subtotal + petrol_cng + natural_gas_cng + petrol_ethanol + other,
pct = subtotal / total) |>
relocate (diesel_electric, .after = petrol_electric) |>
relocate (c (subtotal, pct), .after = battery_electric)
The following tables with 2023-09-30 snapshot data provide information multiple ways to simplify answering particular questions as noted in each section.
Automotive brands with at least some battery electric power train market share in Finland
Sorted by number of battery electric vehicles
Which helps to answer the questions
What are the battery electric vehicles on the road in Finland?
If I were to spot a battery electric vehicle in Finland, which brands would it likely be?
Show the code
data_for_table |>
arrange (desc (battery_electric)) |>
filter (battery_electric > 0 ) %>%
mutate (rank = nrow (.) - rank (battery_electric) + 1 ,
brand = as.character (brand)) |>
relocate (rank) |>
gt (rowname_col = "brand" ) |>
tab_options (table.font.size = 10 ) |>
tab_header (md (glue ("**Automotive brands with some hybrid and electric<br>power train market share in Finland**" ,
"<br>Vehicles in traffic 2023-09-30" ))
) |>
tab_source_note (md ("*Source: TRAFICOM tieto.traficom.fi, trafi2.stat.fi*" )) |>
tab_spanner (columns = c (petrol_electric, diesel_electric, battery_electric, pct, subtotal),
label = "hybrid and electric" ) |>
cols_align (columns = brand,
align = "left" ) |>
fmt_percent (columns = pct,
decimals = 1 ) |>
fmt_number (columns = total,
decimals = 0 ) |>
sub_missing () |>
grand_summary_rows (
columns = c (petrol: subtotal, petrol_cng: total),
fns = list (id = "brand" , label = "Total" , fn = "sum" ),
fmt = ~ fmt_number (., use_seps = FALSE ,
decimals = 0 )
) |>
data_color (
columns = battery_electric,
palette = "grey95"
)
Table C.1: Automotive brands with at least some electric power train market share in Finland
Automotive brands with some hybrid and electric power train market share in Finland Vehicles in traffic 2023-09-30
rank
petrol
diesel
hybrid and electric
petrol_cng
natural_gas_cng
petrol_ethanol
other
total
petrol_electric
diesel_electric
battery_electric
pct
subtotal
Tesla Motors
1
0
0
0
0
18939
100.0%
18939
0
0
0
0
18,939
VW
2
160636
81454
11351
0
10031
7.9%
21382
3387
1602
1191
5
269,657
Nissan
3
108322
12581
0
0
4341
3.5%
4341
37
0
1
0
125,282
Hyundai
4
42203
6730
1951
0
4321
11.4%
6272
18
0
0
2
55,225
Skoda
5
94167
52321
4512
0
4230
5.4%
8742
1289
4146
10
4
160,679
MB
6
50751
99321
15263
3508
4138
13.2%
22909
417
88
3
1
173,490
Volvo
7
69863
117091
25527
2177
3889
14.3%
31593
1741
1
585
8
220,882
BMW
8
34924
68310
20696
0
3877
19.2%
24573
8
0
2
0
127,817
Audi
9
54554
54637
4664
702
3486
7.4%
8852
709
313
135
2
119,202
Kia
10
81731
15994
6534
0
2933
8.8%
9467
19
0
0
0
107,211
Polestar
11
0
0
5
0
2466
100.0%
2471
0
0
0
0
2,471
Peugeot
12
56597
12436
1262
0
2110
4.7%
3372
10
0
4
3
72,422
Opel
13
79305
11343
1587
0
1440
3.2%
3027
41
249
7
0
93,972
Renault
14
42890
4674
894
0
1246
4.3%
2140
11
0
45
2
49,762
Ford
15
120449
34444
2836
0
929
2.3%
3765
109
0
1713
11
160,491
Toyota
16
294828
33420
3600
0
864
1.3%
4464
92
0
0
0
332,804
Porsche
17
1989
649
2115
0
835
52.8%
2950
3
0
0
0
5,591
Seat
18
19961
6500
1052
0
676
5.8%
1728
398
1257
3
0
29,847
Citroen
19
40934
9989
676
0
594
2.4%
1270
20
0
5
2
52,220
Cupra
20
351
0
462
0
517
73.6%
979
0
0
0
0
1,330
Fiat
21
21581
1039
0
0
476
2.1%
476
44
0
0
0
23,140
MG
22
37
2
1
0
473
92.2%
474
1
0
0
0
514
Mini
23
4554
815
1378
0
423
25.1%
1801
2
0
0
0
7,172
Jaguar Land Rover
24
1833
7526
1450
0
383
16.4%
1833
5
0
0
0
11,197
Maxus
25
0
0
0
0
219
100.0%
219
0
0
0
0
219
Mazda
26
37504
3161
352
0
163
1.3%
515
11
0
1
0
41,192
Lexus
27
7595
255
277
0
100
4.6%
377
6
0
0
1
8,234
DS
28
126
25
306
0
89
72.3%
395
0
0
0
0
546
BYD
29
0
0
0
0
63
100.0%
63
0
0
0
0
63
Honda
30
50837
11103
2
0
62
0.1%
64
37
0
3
1
62,045
Subaru
31
13880
3598
0
0
61
0.3%
61
113
0
0
4
17,656
Smart
32
1368
126
0
0
42
2.7%
42
1
0
0
0
1,537
Dacia
33
8713
3755
0
0
37
0.3%
37
6
0
324
1
12,836
Others
34
108
146
35
0
24
18.6%
59
5
0
0
0
318
Mitsubishi
35
15593
4947
11420
0
19
35.7%
11439
19
0
4
10
32,012
Chevrolet
36
7869
1229
142
0
8
1.6%
150
7
0
15
0
9,270
Jeep
37
1695
1695
341
0
5
9.2%
346
7
0
5
0
3,748
Ssangyong
38
136
213
0
0
2
0.6%
2
0
0
0
0
351
Total
—
1527884
661529
120691
6387
74511
—
201589
8573
7656
4056
57
2411344
Source: TRAFICOM tieto.traficom.fi, trafi2.stat.fi
Sorted by percent of brand’s vehicles that are hybrid or electric
Which helps to answer the question
Which brands are succeeding (or not succeeding) in moving to hybrid or battery electric power trains?
Note that in this ranking, having a large “install base” of older petrol or hybrid vehicles counts against a brand.
Show the code
data_for_table |>
arrange (desc (pct)) |>
filter (subtotal > 0 ) %>%
mutate (rank = nrow (.) - rank (pct) + 1 ,
brand = as.character (brand)) |>
relocate (rank) |>
gt (rowname_col = "brand" ) |>
tab_options (table.font.size = 10 ) |>
tab_header (md (glue ("**Automotive brands with some hybrid and electric<br>power train market share in Finland**" ,
"<br>Vehicles in traffic 2023-09-30" ))
) |>
tab_source_note (md ("*Source: TRAFICOM tieto.traficom.fi, trafi2.stat.fi*" )) |>
tab_spanner (columns = c (petrol_electric, diesel_electric, battery_electric, pct, subtotal),
label = "hybrid and electric" ) |>
cols_align (columns = brand,
align = "left" ) |>
fmt_percent (columns = pct,
decimals = 1 ) |>
sub_missing () |>
grand_summary_rows (
columns = c (petrol: subtotal, petrol_cng: total),
fns = list (id = "brand" , label = "Total" , fn = "sum" ),
fmt = ~ fmt_number (., use_seps = FALSE ,
decimals = 0 )
) |>
data_color (
columns = pct,
palette = "grey95"
)
Table C.2: Automotive brands with at least some electric power train market share in Finland
Automotive brands with some hybrid and electric power train market share in Finland Vehicles in traffic 2023-09-30
rank
petrol
diesel
hybrid and electric
petrol_cng
natural_gas_cng
petrol_ethanol
other
total
petrol_electric
diesel_electric
battery_electric
pct
subtotal
Tesla Motors
2.5
0
0
0
0
18939
100.0%
18939
0
0
0
0
18939
Polestar
2.5
0
0
5
0
2466
100.0%
2471
0
0
0
0
2471
Maxus
2.5
0
0
0
0
219
100.0%
219
0
0
0
0
219
BYD
2.5
0
0
0
0
63
100.0%
63
0
0
0
0
63
MG
5.0
37
2
1
0
473
92.2%
474
1
0
0
0
514
Cupra
6.0
351
0
462
0
517
73.6%
979
0
0
0
0
1330
DS
7.0
126
25
306
0
89
72.3%
395
0
0
0
0
546
Porsche
8.0
1989
649
2115
0
835
52.8%
2950
3
0
0
0
5591
Bentley
9.0
75
0
56
0
0
42.1%
56
0
0
2
0
133
BWW
10.0
6
25
18
0
0
36.7%
18
0
0
0
0
49
Mitsubishi
11.0
15593
4947
11420
0
19
35.7%
11439
19
0
4
10
32012
Mini
12.0
4554
815
1378
0
423
25.1%
1801
2
0
0
0
7172
BMW
13.0
34924
68310
20696
0
3877
19.2%
24573
8
0
2
0
127817
Others
14.0
108
146
35
0
24
18.6%
59
5
0
0
0
318
Jaguar Land Rover
15.0
1833
7526
1450
0
383
16.4%
1833
5
0
0
0
11197
Volvo
16.0
69863
117091
25527
2177
3889
14.3%
31593
1741
1
585
8
220882
MB
17.0
50751
99321
15263
3508
4138
13.2%
22909
417
88
3
1
173490
Ferrari
18.0
151
0
20
0
0
11.7%
20
0
0
0
0
171
Hyundai
19.0
42203
6730
1951
0
4321
11.4%
6272
18
0
0
2
55225
Jeep
20.0
1695
1695
341
0
5
9.2%
346
7
0
5
0
3748
Kia
21.0
81731
15994
6534
0
2933
8.8%
9467
19
0
0
0
107211
Nilsson
22.0
29
28
5
0
0
8.1%
5
0
0
0
0
62
VW
23.0
160636
81454
11351
0
10031
7.9%
21382
3387
1602
1191
5
269657
Audi
24.0
54554
54637
4664
702
3486
7.4%
8852
709
313
135
2
119202
Seat
25.0
19961
6500
1052
0
676
5.8%
1728
398
1257
3
0
29847
Skoda
26.0
94167
52321
4512
0
4230
5.4%
8742
1289
4146
10
4
160679
Peugeot
27.0
56597
12436
1262
0
2110
4.7%
3372
10
0
4
3
72422
Lexus
28.0
7595
255
277
0
100
4.6%
377
6
0
0
1
8234
Renault
29.0
42890
4674
894
0
1246
4.3%
2140
11
0
45
2
49762
Nissan
30.0
108322
12581
0
0
4341
3.5%
4341
37
0
1
0
125282
Opel
31.0
79305
11343
1587
0
1440
3.2%
3027
41
249
7
0
93972
Smart
32.0
1368
126
0
0
42
2.7%
42
1
0
0
0
1537
Citroen
33.0
40934
9989
676
0
594
2.4%
1270
20
0
5
2
52220
Ford
34.0
120449
34444
2836
0
929
2.3%
3765
109
0
1713
11
160491
Fiat
35.0
21581
1039
0
0
476
2.1%
476
44
0
0
0
23140
Chevrolet
36.0
7869
1229
142
0
8
1.6%
150
7
0
15
0
9270
Toyota
37.0
294828
33420
3600
0
864
1.3%
4464
92
0
0
0
332804
Mazda
38.0
37504
3161
352
0
163
1.3%
515
11
0
1
0
41192
Suzuki
39.0
17483
430
171
0
0
0.9%
171
36
0
0
0
18120
Cadillac
40.0
436
18
3
0
0
0.6%
3
7
0
6
2
472
Ssangyong
41.0
136
213
0
0
2
0.6%
2
0
0
0
0
351
Subaru
42.0
13880
3598
0
0
61
0.3%
61
113
0
0
4
17656
Dacia
43.0
8713
3755
0
0
37
0.3%
37
6
0
324
1
12836
Honda
44.0
50837
11103
2
0
62
0.1%
64
37
0
3
1
62045
Chrysler
45.0
5555
1331
7
0
0
0.1%
7
12
0
17
1
6923
Alfa Romeo
46.0
2461
819
3
0
0
0.1%
3
1
0
0
0
3284
Total
—
1554080
664180
120974
6387
74511
—
201872
8629
7656
4081
60
2440558
Source: TRAFICOM tieto.traficom.fi, trafi2.stat.fi
Sorted by number of vehicles all power trains
Which helps to answer the question
Which brands have the largest and smallest market share in Finland independent of power train technology?
Show the code
data_for_table |>
arrange (desc (total)) |>
filter (total > 0 ) %>%
mutate (rank = nrow (.) - rank (total) + 1 ,
brand = as.character (brand)) |>
relocate (rank) |>
gt (rowname_col = "brand" ) |>
tab_options (table.font.size = 10 ) |>
tab_header (md (glue ("**Automotive brands with some hybrid and electric<br>power train market share in Finland**" ,
"<br>Vehicles in traffic 2023-09-30" ))
) |>
tab_source_note (md ("*Source: TRAFICOM tieto.traficom.fi, trafi2.stat.fi*" )) |>
tab_spanner (columns = c (petrol_electric, diesel_electric, battery_electric, pct, subtotal),
label = "hybrid and electric" ) |>
cols_align (columns = brand,
align = "left" ) |>
fmt_percent (columns = pct,
decimals = 1 ) |>
sub_missing () |>
grand_summary_rows (
columns = c (petrol: subtotal, petrol_cng: total),
fns = list (id = "brand" , label = "Total" , fn = "sum" ),
fmt = ~ fmt_number (., use_seps = FALSE ,
decimals = 0 )
) |>
data_color (
columns = total,
palette = "grey95"
)
Table C.3: Automotive brands with at least some electric power train market share in Finland
Automotive brands with some hybrid and electric power train market share in Finland Vehicles in traffic 2023-09-30
rank
petrol
diesel
hybrid and electric
petrol_cng
natural_gas_cng
petrol_ethanol
other
total
petrol_electric
diesel_electric
battery_electric
pct
subtotal
Toyota
1.0
294828
33420
3600
0
864
1.3%
4464
92
0
0
0
332804
VW
2.0
160636
81454
11351
0
10031
7.9%
21382
3387
1602
1191
5
269657
Volvo
3.0
69863
117091
25527
2177
3889
14.3%
31593
1741
1
585
8
220882
MB
4.0
50751
99321
15263
3508
4138
13.2%
22909
417
88
3
1
173490
Skoda
5.0
94167
52321
4512
0
4230
5.4%
8742
1289
4146
10
4
160679
Ford
6.0
120449
34444
2836
0
929
2.3%
3765
109
0
1713
11
160491
BMW
7.0
34924
68310
20696
0
3877
19.2%
24573
8
0
2
0
127817
Nissan
8.0
108322
12581
0
0
4341
3.5%
4341
37
0
1
0
125282
Audi
9.0
54554
54637
4664
702
3486
7.4%
8852
709
313
135
2
119202
Kia
10.0
81731
15994
6534
0
2933
8.8%
9467
19
0
0
0
107211
Opel
11.0
79305
11343
1587
0
1440
3.2%
3027
41
249
7
0
93972
Peugeot
12.0
56597
12436
1262
0
2110
4.7%
3372
10
0
4
3
72422
Honda
13.0
50837
11103
2
0
62
0.1%
64
37
0
3
1
62045
Hyundai
14.0
42203
6730
1951
0
4321
11.4%
6272
18
0
0
2
55225
Citroen
15.0
40934
9989
676
0
594
2.4%
1270
20
0
5
2
52220
Renault
16.0
42890
4674
894
0
1246
4.3%
2140
11
0
45
2
49762
Mazda
17.0
37504
3161
352
0
163
1.3%
515
11
0
1
0
41192
Mitsubishi
18.0
15593
4947
11420
0
19
35.7%
11439
19
0
4
10
32012
Seat
19.0
19961
6500
1052
0
676
5.8%
1728
398
1257
3
0
29847
Fiat
20.0
21581
1039
0
0
476
2.1%
476
44
0
0
0
23140
Tesla Motors
21.0
0
0
0
0
18939
100.0%
18939
0
0
0
0
18939
Suzuki
22.0
17483
430
171
0
0
0.9%
171
36
0
0
0
18120
Subaru
23.0
13880
3598
0
0
61
0.3%
61
113
0
0
4
17656
Saab
24.0
10864
1857
0
0
0
0.0%
0
10
0
426
0
13157
Dacia
25.0
8713
3755
0
0
37
0.3%
37
6
0
324
1
12836
Jaguar Land Rover
26.0
1833
7526
1450
0
383
16.4%
1833
5
0
0
0
11197
Chevrolet
27.0
7869
1229
142
0
8
1.6%
150
7
0
15
0
9270
Lexus
28.0
7595
255
277
0
100
4.6%
377
6
0
0
1
8234
Mini
29.0
4554
815
1378
0
423
25.1%
1801
2
0
0
0
7172
Chrysler
30.0
5555
1331
7
0
0
0.1%
7
12
0
17
1
6923
Porsche
31.0
1989
649
2115
0
835
52.8%
2950
3
0
0
0
5591
Jeep
32.0
1695
1695
341
0
5
9.2%
346
7
0
5
0
3748
Alfa Romeo
33.0
2461
819
3
0
0
0.1%
3
1
0
0
0
3284
Dodge
34.0
1965
565
0
0
0
0.0%
0
1
0
12
0
2543
Polestar
35.0
0
0
5
0
2466
100.0%
2471
0
0
0
0
2471
Smart
36.0
1368
126
0
0
42
2.7%
42
1
0
0
0
1537
Cupra
37.0
351
0
462
0
517
73.6%
979
0
0
0
0
1330
Daewoo
38.0
1148
0
0
0
0
0.0%
0
0
0
0
0
1148
Lada
39.0
1102
0
0
0
0
0.0%
0
0
0
0
0
1102
DS
40.0
126
25
306
0
89
72.3%
395
0
0
0
0
546
MG
41.0
37
2
1
0
473
92.2%
474
1
0
0
0
514
Cadillac
42.0
436
18
3
0
0
0.6%
3
7
0
6
2
472
Ssangyong
43.0
136
213
0
0
2
0.6%
2
0
0
0
0
351
Quattro
44.0
317
7
0
0
0
0.0%
0
0
0
0
0
324
Others
45.0
108
146
35
0
24
18.6%
59
5
0
0
0
318
Maxus
46.0
0
0
0
0
219
100.0%
219
0
0
0
0
219
Ferrari
47.0
151
0
20
0
0
11.7%
20
0
0
0
0
171
Lancia
48.0
76
89
0
0
0
0.0%
0
1
0
0
0
166
Bentley
49.0
75
0
56
0
0
42.1%
56
0
0
2
0
133
Maserati
50.0
81
25
0
0
0
0.0%
0
0
0
0
0
106
MAN
51.0
0
97
0
0
0
0.0%
0
0
0
0
0
97
Rover
52.0
79
17
0
0
0
0.0%
0
0
0
0
0
96
BYD
53.0
0
0
0
0
63
100.0%
63
0
0
0
0
63
Nilsson
54.0
29
28
5
0
0
8.1%
5
0
0
0
0
62
Infiniti
55.5
42
16
0
0
0
0.0%
0
0
0
0
0
58
Lincoln
55.5
57
0
0
0
0
0.0%
0
0
0
1
0
58
Busconcept
57.0
0
51
0
0
0
0.0%
0
0
0
0
0
51
BWW
58.0
6
25
18
0
0
36.7%
18
0
0
0
0
49
Aston Martin
59.0
40
0
0
0
0
0.0%
0
0
0
0
0
40
Daihatsu
60.0
36
0
0
0
0
0.0%
0
0
0
0
0
36
Lamborghini
61.0
34
0
0
0
0
0.0%
0
0
0
0
0
34
Pontiac
62.0
27
0
0
0
0
0.0%
0
0
0
0
0
27
GMC
63.5
20
0
0
0
0
0.0%
0
0
0
1
0
21
Lotus
63.5
21
0
0
0
0
0.0%
0
0
0
0
0
21
Mercury
65.0
14
0
0
0
0
0.0%
0
0
0
0
0
14
Vauxhall
66.0
8
4
0
0
0
0.0%
0
0
0
0
0
12
Buick
67.0
11
0
0
0
0
0.0%
0
0
0
0
0
11
Daimler
68.0
5
3
0
0
0
0.0%
0
0
0
0
0
8
Rolls-Royce
69.0
5
0
0
0
0
0.0%
0
0
0
0
0
5
Isuzu
70.0
1
2
0
0
0
0.0%
0
0
0
0
0
3
Plymouth
71.0
1
0
0
0
0
0.0%
0
0
0
0
0
1
Total
—
1570034
666913
120974
6387
74511
—
201872
8641
7656
4521
60
2459697
Source: TRAFICOM tieto.traficom.fi, trafi2.stat.fi
Automotive brands WITHOUT hybrid or electric vehicles
Sorted by number of vehicles all power trains
Which helps to answer the question
Which brands (from the perspective of the Finnish passenger vehicle market) seemingly are not even trying to move to hybrid or battery electric power trains?
Show the code
data_for_table |>
arrange (desc (total)) %>%
filter (subtotal == 0 & total > 0 ) %>%
mutate (rank = nrow (.) - rank (total) + 1 ,
brand = as.character (brand)) |>
relocate (rank) |>
gt (rowname_col = "brand" ) |>
tab_options (table.font.size = 10 ) |>
tab_header (md (glue ("**Automotive brands without hybrid or electric<br>power train market share in Finland**" ,
"<br>Vehicles in traffic 2023-09-30" ))
) |>
tab_source_note (md ("*Source: TRAFICOM tieto.traficom.fi, trafi2.stat.fi*" )) |>
tab_spanner (columns = c (petrol_electric, diesel_electric, battery_electric, pct, subtotal),
label = "hybrid and electric" ) |>
cols_align (columns = brand,
align = "left" ) |>
fmt_percent (columns = pct,
decimals = 1 ) |>
sub_missing () |>
grand_summary_rows (
columns = c (petrol: subtotal, petrol_cng: total),
fns = list (id = "brand" , label = "Total" , fn = "sum" ),
fmt = ~ fmt_number (., use_seps = FALSE ,
decimals = 0 )
) |>
data_color (
columns = total,
palette = "grey95" #c("dodgerblue"),
#alpha = 0.1
)
Table C.4: Automotive brands WITHOUT any electric power train market share in Finland
Automotive brands without hybrid or electric power train market share in Finland Vehicles in traffic 2023-09-30
rank
petrol
diesel
hybrid and electric
petrol_cng
natural_gas_cng
petrol_ethanol
other
total
petrol_electric
diesel_electric
battery_electric
pct
subtotal
Saab
1.0
10864
1857
0
0
0
0.0%
0
10
0
426
0
13157
Dodge
2.0
1965
565
0
0
0
0.0%
0
1
0
12
0
2543
Daewoo
3.0
1148
0
0
0
0
0.0%
0
0
0
0
0
1148
Lada
4.0
1102
0
0
0
0
0.0%
0
0
0
0
0
1102
Quattro
5.0
317
7
0
0
0
0.0%
0
0
0
0
0
324
Lancia
6.0
76
89
0
0
0
0.0%
0
1
0
0
0
166
Maserati
7.0
81
25
0
0
0
0.0%
0
0
0
0
0
106
MAN
8.0
0
97
0
0
0
0.0%
0
0
0
0
0
97
Rover
9.0
79
17
0
0
0
0.0%
0
0
0
0
0
96
Infiniti
10.5
42
16
0
0
0
0.0%
0
0
0
0
0
58
Lincoln
10.5
57
0
0
0
0
0.0%
0
0
0
1
0
58
Busconcept
12.0
0
51
0
0
0
0.0%
0
0
0
0
0
51
Aston Martin
13.0
40
0
0
0
0
0.0%
0
0
0
0
0
40
Daihatsu
14.0
36
0
0
0
0
0.0%
0
0
0
0
0
36
Lamborghini
15.0
34
0
0
0
0
0.0%
0
0
0
0
0
34
Pontiac
16.0
27
0
0
0
0
0.0%
0
0
0
0
0
27
GMC
17.5
20
0
0
0
0
0.0%
0
0
0
1
0
21
Lotus
17.5
21
0
0
0
0
0.0%
0
0
0
0
0
21
Mercury
19.0
14
0
0
0
0
0.0%
0
0
0
0
0
14
Vauxhall
20.0
8
4
0
0
0
0.0%
0
0
0
0
0
12
Buick
21.0
11
0
0
0
0
0.0%
0
0
0
0
0
11
Daimler
22.0
5
3
0
0
0
0.0%
0
0
0
0
0
8
Rolls-Royce
23.0
5
0
0
0
0
0.0%
0
0
0
0
0
5
Isuzu
24.0
1
2
0
0
0
0.0%
0
0
0
0
0
3
Plymouth
25.0
1
0
0
0
0
0.0%
0
0
0
0
0
1
Total
—
15954
2733
0
0
0
—
0
12
0
440
0
19139
Source: TRAFICOM tieto.traficom.fi, trafi2.stat.fi
Automotive brands sorted by alphabetical order
Which simplifies finding the information by brand.
Show the code
data_for_table |>
arrange (as.character (brand)) |>
filter (total > 0 ) %>%
gt (rowname_col = "brand" ) |>
tab_options (table.font.size = 10 ) |>
tab_header (md (glue ("**Automotive brands with some market share in Finland**" ,
"<br>Vehicles in traffic 2023-09-30" ))
) |>
tab_source_note (md ("*Source: TRAFICOM tieto.traficom.fi, trafi2.stat.fi*" )) |>
tab_spanner (columns = c (petrol_electric, diesel_electric, battery_electric, pct, subtotal),
label = "hybrid and electric" ) |>
cols_align (columns = brand,
align = "left" ) |>
fmt_percent (columns = pct,
decimals = 1 ) |>
sub_missing () |>
grand_summary_rows (
columns = c (petrol: subtotal, petrol_cng: total),
fns = list (id = "brand" , label = "Total" , fn = "sum" ),
fmt = ~ fmt_number (., use_seps = FALSE ,
decimals = 0 )
)
Table C.5: Automotive brands with at least some market share in Finland
Automotive brands with some market share in Finland Vehicles in traffic 2023-09-30
petrol
diesel
hybrid and electric
petrol_cng
natural_gas_cng
petrol_ethanol
other
total
petrol_electric
diesel_electric
battery_electric
pct
subtotal
Alfa Romeo
2461
819
3
0
0
0.1%
3
1
0
0
0
3284
Aston Martin
40
0
0
0
0
0.0%
0
0
0
0
0
40
Audi
54554
54637
4664
702
3486
7.4%
8852
709
313
135
2
119202
BMW
34924
68310
20696
0
3877
19.2%
24573
8
0
2
0
127817
BWW
6
25
18
0
0
36.7%
18
0
0
0
0
49
BYD
0
0
0
0
63
100.0%
63
0
0
0
0
63
Bentley
75
0
56
0
0
42.1%
56
0
0
2
0
133
Buick
11
0
0
0
0
0.0%
0
0
0
0
0
11
Busconcept
0
51
0
0
0
0.0%
0
0
0
0
0
51
Cadillac
436
18
3
0
0
0.6%
3
7
0
6
2
472
Chevrolet
7869
1229
142
0
8
1.6%
150
7
0
15
0
9270
Chrysler
5555
1331
7
0
0
0.1%
7
12
0
17
1
6923
Citroen
40934
9989
676
0
594
2.4%
1270
20
0
5
2
52220
Cupra
351
0
462
0
517
73.6%
979
0
0
0
0
1330
DS
126
25
306
0
89
72.3%
395
0
0
0
0
546
Dacia
8713
3755
0
0
37
0.3%
37
6
0
324
1
12836
Daewoo
1148
0
0
0
0
0.0%
0
0
0
0
0
1148
Daihatsu
36
0
0
0
0
0.0%
0
0
0
0
0
36
Daimler
5
3
0
0
0
0.0%
0
0
0
0
0
8
Dodge
1965
565
0
0
0
0.0%
0
1
0
12
0
2543
Ferrari
151
0
20
0
0
11.7%
20
0
0
0
0
171
Fiat
21581
1039
0
0
476
2.1%
476
44
0
0
0
23140
Ford
120449
34444
2836
0
929
2.3%
3765
109
0
1713
11
160491
GMC
20
0
0
0
0
0.0%
0
0
0
1
0
21
Honda
50837
11103
2
0
62
0.1%
64
37
0
3
1
62045
Hyundai
42203
6730
1951
0
4321
11.4%
6272
18
0
0
2
55225
Infiniti
42
16
0
0
0
0.0%
0
0
0
0
0
58
Isuzu
1
2
0
0
0
0.0%
0
0
0
0
0
3
Jaguar Land Rover
1833
7526
1450
0
383
16.4%
1833
5
0
0
0
11197
Jeep
1695
1695
341
0
5
9.2%
346
7
0
5
0
3748
Kia
81731
15994
6534
0
2933
8.8%
9467
19
0
0
0
107211
Lada
1102
0
0
0
0
0.0%
0
0
0
0
0
1102
Lamborghini
34
0
0
0
0
0.0%
0
0
0
0
0
34
Lancia
76
89
0
0
0
0.0%
0
1
0
0
0
166
Lexus
7595
255
277
0
100
4.6%
377
6
0
0
1
8234
Lincoln
57
0
0
0
0
0.0%
0
0
0
1
0
58
Lotus
21
0
0
0
0
0.0%
0
0
0
0
0
21
MAN
0
97
0
0
0
0.0%
0
0
0
0
0
97
MB
50751
99321
15263
3508
4138
13.2%
22909
417
88
3
1
173490
MG
37
2
1
0
473
92.2%
474
1
0
0
0
514
Maserati
81
25
0
0
0
0.0%
0
0
0
0
0
106
Maxus
0
0
0
0
219
100.0%
219
0
0
0
0
219
Mazda
37504
3161
352
0
163
1.3%
515
11
0
1
0
41192
Mercury
14
0
0
0
0
0.0%
0
0
0
0
0
14
Mini
4554
815
1378
0
423
25.1%
1801
2
0
0
0
7172
Mitsubishi
15593
4947
11420
0
19
35.7%
11439
19
0
4
10
32012
Nilsson
29
28
5
0
0
8.1%
5
0
0
0
0
62
Nissan
108322
12581
0
0
4341
3.5%
4341
37
0
1
0
125282
Opel
79305
11343
1587
0
1440
3.2%
3027
41
249
7
0
93972
Others
108
146
35
0
24
18.6%
59
5
0
0
0
318
Peugeot
56597
12436
1262
0
2110
4.7%
3372
10
0
4
3
72422
Plymouth
1
0
0
0
0
0.0%
0
0
0
0
0
1
Polestar
0
0
5
0
2466
100.0%
2471
0
0
0
0
2471
Pontiac
27
0
0
0
0
0.0%
0
0
0
0
0
27
Porsche
1989
649
2115
0
835
52.8%
2950
3
0
0
0
5591
Quattro
317
7
0
0
0
0.0%
0
0
0
0
0
324
Renault
42890
4674
894
0
1246
4.3%
2140
11
0
45
2
49762
Rolls-Royce
5
0
0
0
0
0.0%
0
0
0
0
0
5
Rover
79
17
0
0
0
0.0%
0
0
0
0
0
96
Saab
10864
1857
0
0
0
0.0%
0
10
0
426
0
13157
Seat
19961
6500
1052
0
676
5.8%
1728
398
1257
3
0
29847
Skoda
94167
52321
4512
0
4230
5.4%
8742
1289
4146
10
4
160679
Smart
1368
126
0
0
42
2.7%
42
1
0
0
0
1537
Ssangyong
136
213
0
0
2
0.6%
2
0
0
0
0
351
Subaru
13880
3598
0
0
61
0.3%
61
113
0
0
4
17656
Suzuki
17483
430
171
0
0
0.9%
171
36
0
0
0
18120
Tesla Motors
0
0
0
0
18939
100.0%
18939
0
0
0
0
18939
Toyota
294828
33420
3600
0
864
1.3%
4464
92
0
0
0
332804
VW
160636
81454
11351
0
10031
7.9%
21382
3387
1602
1191
5
269657
Vauxhall
8
4
0
0
0
0.0%
0
0
0
0
0
12
Volvo
69863
117091
25527
2177
3889
14.3%
31593
1741
1
585
8
220882
Total
1570034
666913
120974
6387
74511
—
201872
8641
7656
4521
60
2459697
Source: TRAFICOM tieto.traficom.fi, trafi2.stat.fi